Логотип

Логотип
Нижний Новгород. Строительные материалы
603037 Нижний Новгород, ул. Федосеенко, д. 54
тел./факс 8 (831) 225-44-50, 223-55-05, 229-06-66, 223-55-45, 225-77-78, 223-73-53, 225-71-31
 
           

Плазменная сварка косвенного действия это


Плазменная сварка - технология, оборудование, принцип действия

С ростом точности деталей, изготавливаемых в промышленности и на частных предприятиях, появляется потребность в новых технологиях сварки и резки металлов. Одним из таких нововведений является плазменная сварка. Несмотря на то, что метод появился относительно недавно, он уже успел получить и занять свою нишу в промышленности и в руках частных лиц. Давайте рассмотрим, что такое технология плазменно дуговой сварки?

Принцип работы плазменной сварки

Во многом, плазменные сварочные аппараты напоминают принцип действия аргонно-дуговых и имеют схожую конструкцию горелки, которая в нашем случае называется – плазмотроном. Процесс образования плазмы происходит именно в горелке (об этом далее).

Плазма – это одно из состояний газа, которое образуется, если пропустить его через дугу. В этот момент происходят сложные химические и физические процессы, газ приобретает особые свойства. Нам, в данном случае интересен тот факт, что температура вырывающейся из сопла плазмы может доходить до 30 тысяч градусов, а это в 6 раз больше самой горячей дуги.

Таким образом, сущностью плазменной сварки является ионизация газа, проходящего под давлением.

В таких условиях происходит резка металла, который расплавляется мгновенно, а часть его просто испаряется. Для сваривания используют более щадящие режимы, а также технологию контроля дуги. Плазменные резаки считаются одними из наиболее точных и эффективных методов резки различных металлов.

Схема плазменной сварки открытой и закрытой плазменной струей

Чтобы понять принцип работы плазменной сварки, нужно перейти непосредственно к аппарату. Сама плазменная сварка представляет собой небольшую, весом 5 – 9 кг установку, внутри которой расположился понижающий трансформатор, выпрямитель и набор схем управления. К ней подключается воздушный компрессор (если в сопло подается сжатый воздух) или специальные баллоны с плазмообразующим газом и инертным газом. В качестве газа для создания плазмы используют азот, кислород, аргон, воздух. На выходе устройства имеем горелку с набором газов (для сварки) или один вид газа для резки, а также плюсовую клемму (для прямого вида сварки). Так, как температура работы этого компонента очень высока, внутри горелки имеется жидкостное охлаждение.

Обратите внимание! От эффективности охлаждения горелки будет зависеть не только качество шва, но и долговечность электрода и других компонентов. Сварщик должен внимательно следить не только за ходом сварки, но и за поступлением воды.

Дальнейшее описание технологии приводит нас к двум ее разновидностям:

Рекомендуем!   Аргонная сварка нержавейки

Плазменная сварка прямого действия

Первый и наиболее распространенный метод плазменной сварки имеет прямое действие дуги на деталь. Сваривание происходит прямой дугой, образующейся между деталью и электродом, однако сам процесс розжига плазмы имеет двухступенчатую схему.

Плазменная сварка прямого действия

На первом этапе внутренний стержень плазмотрона (изображение ниже) имеет отрицательную полярность, в то время, как ближняя стенка сопла получает положительный заряд из-за замкнутого переключателя (0). Внутри сопла образуются дуги (отмечено красным), которые ионизируют проходящий газ (2) и превращают его в плазму.

Следующий этап – непосредственно сварка, для этого на деталь цепляют плюсовую клемму и подносят работающий плазмотрон. В этот момент изделие имеет лучшую проводимость, поэтому дуги концентрируются на конце вольфрамового электрода, переключатель размыкает внутреннюю цепь плазмотрона и под действием давления, а также естественного расширения газа при превращении в плазму, происходит направленный выплеск энергии. При этом плазменная дуга имеет высокую стабильность, а минимальное разбрызгивание и изоляцию сварного участка обеспечивает инертный газ, проходящий по каналу (1). Газ не только защищает плазменную дугу, но и изолирует сварную ванну.

Плазменная сварка косвенного действия

Механизм плазмообразования в данном случае схож с предыдущим методом. Главное отличие в том, что направленность плазменного потока контролируется не направленностью электрического потока, а давлением газа, созданным системой и внутренним давлением сопла. Здесь помогает тот факт, что при переходе в состояние плазмы газ начинает увеличиваться в объеме до 50 раз, поэтому при возросшем давлении естественным образом стремится вырваться из сопла.

Плазма косвенного действия

Оба описанных способа имеют место в современном мире, однако прямой метод имеет больше плюсов. Так он гарантирует более стабильную работу на малых силах тока, позволяет меньше расходовать дорогостоящий газ и имеет заметно меньшую степень разбрызгивания.Аналогичным образом происходит резка металла, только без использования инертного газа (1).

Оборудование для плазменной сварки

Современные сварочные плазменные аппараты — это компактные устройства, сравнимые по размерам с аргонно-дуговыми, инверторными или трансформаторными аппаратами. Простейшие модели имеют компактный размер и минимум настроек для удобства пользования. С их помощью можно производить сварку и резку металла.

Схема сборки оборудования при ручной плазменной резке

С ростом цены увеличивается функциональность аппаратов, так в продаже можно найти оборудование, с функцией пайки. Устройства профессионального уровня позволяют проводить операции воронения, термического оксидирования, порошкового напыления и закалки.

Ценовую политику оборудования можно разделить на несколько категорий. К стартовым, относятся устройства мощностью 8 – 12 А. Их стоимость находится в пределах 25 – 40 тысяч рублей, это самые дешевые аппараты, которые можно приобрести и они уже в разы дороже инверторов, полуавтоматов. Некоторые аппараты поддерживают функцию микроплазменной резки, другими словами работы при малых токах от 0.1А.

В средней ценовой категории расположились сварки мощностью 25 – 150А. Они имеют расширенные настройки, позволяют подключать несколько видов газов и нередко имеют расширенный функционал. Стоимость таких аппаратов от 40 до 150 тысяч рублей.

Самые дорогие из неавтоматизированных — сварки мощностью выше 150 А. В их конструкцию заложен практически весь возможный функционал плазменной технологии, но все работы производятся сварщиком. Цена начинается со 100 тысяч и может превышать отметку 1 миллион рублей.

Область применения

Благодаря работе при температурах, доходящих до 30 000 градусов, технология позволяет работать со многими видами металлов: нержавеющая сталь, углеродистая сталь, чугун, медь, латунь, бронза, титан, алюминий и другие. Вместе с высокой точностью работ, это обуславливает такие области использования технологии:

  1. пищевая промышленность;
  2. энергетическая сферы;
  3. химическое производство;
  4. ювелирное дело;
  5. машиностроение;
  6. приборостроение;
  7. медицинское оборудование;
  8. изготовление деталей высокой точности.
Рекомендуем!   Чем и как сваривают алюминий

Преимущества и недостатки метода

Как видно, использование плазмы имеет свои преимущества, но не обошлось и без недостатков. Ниже, мы выделили основные положительные и негативные моменты.

Плюсы

  1. Высокое качество и скорость работ.
  2. Контроль глубины провара.
  3. Доступность технологии частным лицам.
  4. Безопасность работ.
  5. В процессе работы не остается отходов.
  6. Высокая точность резки позволяет дополнительно не обрабатывать кромки.

Основной положительный момент технологии – ее незаменимость. Большая часть работ может быть выполнены и другими методами, но когда речь идет о лучшей скорости, качестве и удобстве сварки, мы неизбежно приходим к плазменному методу.

Недостатки

  1. Дорогие аппараты и высокая стоимость работ.
  2. Высокие требования к квалификации сварщика.
  3. Необходимость качественного охлаждения из-за высоких температурных потерь.

Главный минус технологии – ее сложность. Чтобы обучить хорошего специалиста требуется время и деньги, в противном случае метод не сможет принести должных результатов. Это связанно с тем, что в процессе работ важно не только контролировать процесс сварки, но и внимательно следить за охлаждением, поступлением газов и многими другими параметрами.

Заключение

Теперь вы знаете, как работает плазменная сварка. Если стоимость оборудования вас не пугает, то технологию вполне успешно можно использовать для выполнения высокоточных работ в условиях дома или небольшого предприятия. Для создания герметичных швов и изготовления соединений высокой точности, подобные аппараты будут незаменимы, тем более, если мы говорим о промышленных масштабах. Здесь в дело вступают автоматизированные плазменные комплексы, сводящие к минимуму человеческий фактор и погрешность работ.

svarkagid.ru

Плазменная сварка: что это такое, особенности и сущность

Чтобы металлические конструкции изделия были прочными и качественными, для соединения важных частей из стали применяется сварка. Эта технология используется на протяжении многих лет и за период ее существования появилось множество разновидностей, которые позволяют работать с разными материалами.

Плазменная сварка является популярной разновидностью, которую применяют многие опытные сварщики. В ее основе лежит принцип расплавления сплавов узконаправленной струей плазмы, которая обладает огромной энергией. Этот вид технологии используется для соединения некоторых марок нержавеющих сталей, тугоплавких и многих цветных металлов, а также изделий из разных материалов. Но все же перед тем как приступать к сварочным работам стоит предварительно рассмотреть важные особенности.

Сущность плазменной сварки

Плазменная сварка металла основывается на использовании технологии аргонодуговой технологии. Различие между этими двумя технологиями состоит в особенностях дуги. В отличие от электрической дуга плазма имеет вид сжатой плазменной струи, которая обладает мощной энергией.

Чтобы понять, в чем заключается сущность плазменной сварки, требуется для начала рассмотреть, что такое плазма и условия ее возникновения. Плазмой считается состояние газа при его частичной или полной ионизации. Это означает, что в его основу могут входить не только нейтральные молекулы и атомы, но и электроны, ионы, имеющие определенный электрический заряд, состоящие полностью из заряженных частиц.

Для перевода газа в состояние плазмы требуется провести ионизацию большей части его молекул и атомов. Чтобы это получить, необходимо приложить к электрону, входящему в основу атома, усилие, превышающее его энергию связи с ядром и помочь оторваться от него. Именно в этом состоит сущность плазменной сварки.

Особенности и характеристики процесса

Чтобы понять, что такое плазменная сварка, стоит рассмотреть ее важные особенности, а именно как производится процесс. Во время него обычно в области сваривания применяется очень высокая температура, которая образуется при принудительном уменьшении размеров сечения дуги и повышении ее показателей мощности.

В результате получается сварка плазменной струей, при которой показатели температуры могут доходить до 300000С. А вот при аргонодуговой сварке они могут быть всего 5000-70000С. Во время сварочного процесса дуга приобретает цилиндрическую форму, именно это позволяет сохранять одинаковый показатель мощности по всей длине.

Во время проведения плазменного сваривания наблюдается высокое давление дуги на поверхность свариваемых металлических элементов. Именно это позволяет оказывать воздействие практически на все виды металлов и сплавов.

Стоит отметить! Плазменную технологию сваривания можно применять при небольших величинах электрического тока. Процесс может осуществляться при 0,2-30 А.

Все эти особенности делают этот вид сварки практически универсальным. Он может с успехом применяться в труднодоступных зонах, при соединении тонких алюминиевых листов без возможных прожогов. Незначительное изменение расстояния между электродом и деталью не оказывает сильного воздействия на прогревание, а это значит, не влияет на качество шва, как это бывает в других видах сварки.

За счет того, что во время плазменной технологии наблюдается большая глубина прогревания деталей, это позволяет обходиться без предварительной подготовки кромок. Допускается проводить сваривание металлов с неметаллами.

В итоге происходит повышение производительности работ, уменьшение температурной деформации сварного соединения, это значит, что деталь конструкции не ведет. А вот сварка плазморезом позволяет проводить не только сваривание металлических конструкций, но и обеспечивает качественное разрезание металлов и неметаллов в разном положении.

Преимущества и недостатки

Плазменная сварка и резка является востребованной технологией, при помощи которой производят сваривание конструкций разного размера. Этот процесс имеет ряд положительных качеств:

  • повышенный показатель температуры плазмы, который может доходить до 300000С;
  • небольшое поперечное сечение дуги;
  • в отличие от газовой сварки скорость металла с толщиной от 5 до 20 см по плазменной технологии выше три раза;
  • наблюдается высокая точность сварных соединений, которые получаются в процессе плавления;
  • качество проведенных работ не требует проведения дополнительной обработки краев изделий;
  • плазменный сварочный процесс может применяться практически для любых типов металла. К примеру, при помощи него можно варить изделия из запорожской стали, меди, алюминия, чугуна;
  • во время проведения сварочных работ металл не подвергается деформациям, даже при вырезании сложных фигур;
  • плазменная технология предполагает проведение резки металлической поверхности, которая не прошла предварительную подготовку. К примеру, ее можно применять в случаях, когда на изделии присутствует ржавчина, краска;
  • нет необходимости применять аргон, ацетилен, кислород. Это позволяет существенно сэкономить;
  • наблюдается высокая степень безопасности проводимых работ. Это связано с тем, что во время сваривания не применяются баллоны с газом, которые выделяют токсичные пары. Также при неправильном применении и хранении они могут взорваться.

У плазменного сварочного процесса имеются некоторые недостатки:

  • во время его проведения происходит частичное рассеивание энергии в пространство;
  • требуется использование плазмообразующего газа;
  • обязательно должно проводиться охлаждение плазмотрона при помощи воды;
  • высокая стоимость сварочных аппаратов.

Принцип работы

Перед тем как приступать к плазменной сварке стоит рассмотреть ее принцип работы. Во время процесс подается мощный электрический разряд, который превращает рабочую среду в плазменную. Образуется газ, который имеет высокую температуру.

За счет воздействия на металлическую поверхность потока ионизированного газа, проводимого электрическим током, происходит плавление металлической основы. Во время нагревания дуги газ подвергается ионизации, уровень которой увеличивается с повышением температурных показателей газа.

Плазменная струя, которая обычно имеет сверхвысокую температуру, повышенная мощность, это все формируется из обычно дуги после сжатия, вдувания в дугу. Она образуется при помощи плазмообразующего газа, в качестве которого часто применяется аргон, в редких случаях используется водород, гелий.

Плазменная сварка прямого действия

Что такое плазменная сварка прямого действия? Этот метод является распространенным, он осуществляется благодаря электрической дуге, которая образуется между электродом и рабочим изделием.

Технология плазменной сварки имеет некоторые характерные особенности:

  1. Плазменная сварка алюминия должна выполняться с максимальной осторожностью. Это связано с тем, что данный металл плавится при температуре 660,3 градусов.
  2. Обязательно нужно внимательно контролировать процесс, чтобы не допустить пропал.
  3. В инструкции к сварочным аппаратам всегда указывается таблица, в которой обозначается рекомендованная сила тока для каждого вида металла. К примеру, плазменная сварка нержавейки выполняется на среднем токе, а стали - на высоком.

Обратите внимание! В дуге с прямым действием изначально происходит возбуждение дуги на малых токах, между соплом и заготовкой. После того как плазма прикасается к свариваемой детали образуется основная дуга прямого действия.

Питание дуги производится при помощи переменного или постоянного тока с прямой полярностью. Ее возбуждение выполняется осциллятором.

Плазменная сварка косвенного действия

Перед тем как приступать стоит рассмотреть, что такое плазменная сварка косвенного действия. Во время этого метода образование плазмы осуществляется так же, как и при технологии прямого действия. Отличие состоит в том, что источник питания подключается к электроду и соплу, в результате этого между этими элементами образуется дуга, и на выходе из горелки появляется плазменная среда.

Скорость выхода потока плазмы находится под контролем давления газа. Секрет состоит в том, что газовая смесь при переходе в состояние плазмы увеличивает объем в 50 раз и благодаря этому вылетает из аппарата в виде длиной струи. Энергетические показатели расширяющегося газа совместно с тепловой энергией делают плазму мощным источником энергии.

К преимуществам сварки косвенного действия можно отнести:

  • обеспечивает бесперебойный рабочий процесс;
  • позволяет существенно сэкономить затраты на электрический ток;
  • за счет того, что во время сварочного процесса применяется высокое давление, газовые смеси практически не разбрызгиваются;
  • этот вид отлично подходит для сварки и резки металлов.

Важно! Плазменная сварка и резка металлов должна проводиться с использованием правильных режимов. Они должны осуществлять правильную подачу тока, учитывать типы свариваемых материалов, их показатели толщины, диаметр сопла плазмотрона. Для резки разных материалов должны применяться разные виды газов.

Устройство и принцип работы плазмотрона

Во время плазменного сварочного процесса применяется специальный аппарат, который выполняет роль плазменного генератора, он называется плазмотроном. Это устройство применяет энергию электричества для преобразования газа в состояние плазмы для сварки, которая в дальнейшем применяется для создания сварочной дуги.

Применяется два вида устройств, которые работают по схеме косвенного и прямого преобразования дуги. Плазмотрон для сварки плазмой идет прямого действия, когда в качестве катода применяется вольфрамовый электрод, а анода - свариваемая поверхность. Именно это приводит к тому, что дуга приобретает цилиндрическую форму.

К основным узлам плазмотрона относят:

  1. Вольфрамовый электрод (катод). Он образует одну связку с устройством подачи плазмообразующего газа.
  2. Корпусная часть прибора.
  3. Сопло с формообразующим наконечником.
  4. Термостойкий изолятор.
  5. Система охлаждения, для которой применяется водная струя.
  6. Пусковое устройство.

Для возбуждения основной дуги к поверхности металла от устройства подключается кабель с положительным зарядом. Появившаяся дуга ионизирует газ, который поступает из баллона или компрессора в камеру под давлением. При разогревании во время ионизации газ расширяется и выбрасывается из камерного пространства в форме струи с высокой кинетической энергией.

Стоит отметить! Чтобы облегчить розжиг основной дуги, в область камеры плазмотрона встроен вспомогательный электрод, который выполняет функции анода. При включении плазмотрона в сеть и запуске, данный электрод получает положительный заряд и образует дугу с вольфрамовым катодом.

Важные требования

Возможно, для многих плазменно-дуговая сварка покажется простым процессом, который можно с легкостью выполнить с первого раза не имея большого опыта. Однако во время него обязательно требуется соблюдать все важные правила технологии. К основным ошибкам относятся:

  • запоздалая замена сменных компонентов плазмотрона;
  • применение деталей с низким качеством или дефектами;
  • использование некорректных режимов, которые снижают длительность срока службы элементов;
  • отсутствие контроля за параметрами плазмообразующего газа;
  • применение высокой или низкой скорости резки по сравнению с предусмотренным режимом.

Все эти важные требования относятся к плазменному сварочному процессу, а также его подвидам - микроплазменной сварке, воздушно-плазменной сварке и другим методам. Обязательно требуется применять сварочный аппарат, который сможет обеспечить необходимые характеристики сварочного тока. Понадобится горелка, неплавящийся электрод, комплект шлангов для подачи или циркуляции охлаждающей жидкости и другие важные компоненты для работы.

Плазменный сварочный процесс считается востребованной технологией, которую активно применяют в разных областях промышленности - машиностроение, приборостроение, изготовление деталей высокой точности, ювелирная сфера и так далее. Этот метод отличается высокой точностью, он позволяет получить ровный шов отличного качества. Но все же его проведение должно осуществляться с учетом важных правил и требований.

Интересное видео

osvarka.com

Как устроен и работает плазменный сварочный аппарат

Плазмой в физике называют четвертое состояние вещества после твердой, жидкой и газообразной форм, когда происходит частичная или полная ионизация среды из нейтральных до этого молекул и атомов с соблюдением условия квазинейтральности: равенства объемной плотности всех заряженных частиц.

В сварочной технике используются следующие свойства низкотемпературной (менее миллиона градусов по шкале Кельвина) плазмы:

  • очень высокая электрическая проводимость;

  • сильное влияние внешних магнитных полей на протекание в ней токов, способствующих образованию струй и слоев;

  • проявление коллективных эффектов, выражающихся преобладанием магнитных и электрических сил над гравитационными.

Принципы создания и работы плазменных горелок

У этого способа сварки источником разогрева металлов до температуры плавления является плазменная дуга из ионизированного газа, которая направляется в нужную сторону. Ее вырабатывает специальное устройство, называемое плазмотроном или плазменной горелкой.

Классификация по типу создания дуги

По принципу работы плазмотрон бывает прямого или косвенного действия.

В первом случае разность потенциалов внешнего поля генератора, создающего условия для образования дуги, прикладывается прямо к обрабатываемой детали и электроду газовой горелки. За счет этого повышается эффективность охлаждения конструкции.

При втором методе электрическое напряжение прикладывается только между частями горелки для создания струи плазмы. За счет этого требуется усложнять систему охлаждения соплового узла.

У плазматронов прямого действия вырабатывается дуга, приблизительно напоминающая цилиндрическую форму, немного расширяющуюся у поверхности обрабатываемого металла.

Внутри нейтрального электрического сопла происходит сжатие и стабилизация дуги. При этом сочетание тепловой и кинетической энергии плазмы формирует для нее повышенную мощность, позволяющую глубже проплавлять металл.

Горелки косвенного действия создают плазму в форме конической струи, окруженной факелом, направленным к изделию. Струю выдувает поток плазмы, исходящий из горелки.

Классификация по способам охлаждения горелок

Из-за высокой температуры плазмы применяют различные способы охлаждения деталей плазмотрона:

  • обдув воздухом;

  • теплосъем за счет принудительной циркуляции воды.

Воздушное охлаждение менее затратное, а жидкостное — наиболее эффективное, но сложное.

Классификация по способам стабилизации дуги

Газовая горелка должна обеспечивать ровный, стабилизированный по величине и направлению температурный столб со строгой фиксацией его по оси сопла и электрода.

С этой целью разработано три вида конструкций сопла, использующих энергию:

1. газа;

2. воды;

3. магнитного поля.

При первом способе холодная струя газа, обдувая столб плазмы, охлаждает и одновременно сжимает его. В зависимости от направления струи газового потока создается стабилизация:

1. аксиальная — при параллельном обдуве столба;

2. вихревая, когда поток газа создается в перпендикулярном направлении.

Второй способ более эффективно обжимает дугу и применяется в плазмотронах, используемых для напыления металлов или резки.

Аксиальная стабилизация лучше подходит для сварки и наплавки металлов.

Схема двойной стабилизации сочетает в себе черты аксиальной и вихревой. При ее использовании существует возможность пропускать газ тремя способами:

  • только через основной центральный канал;

  • сквозь оба;

  • исключительно через внешний.

При каждом методе создаются разные схемы обжатия столба плазмы.

Водяная стабилизация использует встречные завихренные потоки жидкости. Образуемый при этом пар помогает создавать плазму с разогревом столба до 50 тысяч градусов по шкале Кельвина.

Существенным недостатком этого метода является интенсивное сгорание катода. Для таких устройств электрод делают из графита, разрабатывая механизмы его автоматического приближения к обрабатываемой детали по мере постоянного расхода длины.

Устройства плазмотронов с водяной стабилизацией отмечаются:

  • сложностью конструкции;

  • низкой надежностью системы подачи электрода;

  • трудоемкостью методов возбуждения дуги.

Магнитная стабилизация работает за счет направленного магнитного поля, расположенного поперек перемещения столба дуги. Ее эффективность самая низкая, а соленоид, встроенный в сопло, значительно усложняет схему плазмотрона.

Однако, магнитную стабилизацию применяют для придания вращательного движения анодному пятну внутри стенок сопла. Это позволяет уменьшать эрозию материала сопла, которая влияет на чистоту струи плазмы.

Все рассмотренные выше конструкции плазматронов относятся к дуговым. Но существует еще один вид подобных устройств создания плазмы за счет энергии высокочастотного тока, проходящего по катушке индуктора. Такие плазматроны называются индукционными (ВЧ) и они не требуют наличия электродов для создания разряда дуги.

Они не обладают особыми преимуществами в воздействии на обрабатываемые металлы по сравнению с дуговыми устройствами и используются для решения отдельных технологических процессов, например, выработки чистых порошковых металлов.

Конструктивные особенности горелок

Работу одного из видов плазменной горелки позволяет объяснить приведенный ниже рисунок.

Плазменная дуга при сварке создается внутри защитной атмосферной оболочки, образованной подачей в рабочую зону вдуваемого газа. Им чаще всего выбирают аргон.

Плазмообразующим газом (источником ионизации) может работать:

  • аргон;

  • азот;

  • гелий;

  • воздух;

  • водород;

  • смеси перечисленных газов.

Следует учитывать, особенности их эксплуатации:

  • водород взрывоопасен;

  • из воздуха выделяются нитриды и озон;

  • гелий дорогой;

  • азот при больших температурах вредно влияет на экологию.

В качестве материала для электродов чаще всего выбирают вольфрам из-за наиболее подходящих механических свойств и стойкости к высоким температурам.

Газовое сопло закрепляется в горелке и обдувается защитным потоком. По гидравлическим магистралям нагнетается холодная жидкость и отводится нагретая.

Токоведущие провода подводят к электродам электрическую энергию постоянного либо переменного тока.

Чтобы питать плазмообразующую дугу подключают источник тока с напряжением порядка 120 вольт для сварки и около 300 на холостом ходу — для резки.

Устройство плазменного генератора

Для запуска плазматрона может использоваться переменный или постоянный ток. В качестве примера рассмотрим работу генератора от обычной сети электроснабжения 220 вольт.

Балластный резистор ограничивает ток питания. Дроссель регулирует нагрузку. Диодный мост преобразует переменное напряжение для поддержания дежурной дуги.

Воздушный компрессор подает защитный газ в горелку, а гидравлическая система охлаждения обеспечивает циркуляцию жидкости в магистралях плазматрона для поддержания эффективного теплосъема.

Техника выполнения плазменной сварки и резки

Для зажигания и поддержания сварочной дуги используют энергию электрического тока, а для ее бесконтактного возбуждения — осциллятор (источник колебаний).

Применение дежурной дуги между электродом и соплом позволяет значительно облегчать процесс запуска плазмы.

Подобная сварка позволят соединять практически все металлы и сплавы, расположенные в нижней или вертикальной плоскости.

Без предварительной обработки кромок на скос можно сваривать заготовки с толщиной до 15 мм. При этом образуется характерный провар со специфическими формами благодаря выходу плазменной струи за пределы обратной стороны свариваемой детали через сквозные прорези.

Фактически сварка плазмой в большинстве случаев представляет собой двойной непрерывный процесс:

  • прорезания материала заготовок;

  • заварки места разреза.

Технология резки основана на:

  • расплаве слоя металла в месте обработки;

  • выдувания жидкой фракции потоком плазмы.

Толщина металла влияет на технологию резки. Для тонких изделий применяют дугу косвенного метода, а при более толстых лучше работают плазмотроны прямого подключения.

Плазменная резка наиболее экономична для всех металлов, включая углеродистые стали.

Для выполнения плазменной сварки и резки разработаны автоматизированные линии и ручные установки.

Виды плазменной сварки

На мощность создаваемой дуги влияет сила применяемого тока. По ее величине определяют три вида сварки:

1. микроплазменная;

2. средняя;

3. на больших токах.

Микроплазменная сварка

Она работает на токах, ограниченных величинами 0,1÷25 ампер. Эта технология используется в радиоэлектронике, приборостроении, ювелирном деле, изготовлении сильфонов, мембран, термопар, фольги, тонкостенных труб и емкостей, позволяя прочно соединять детали толщиной 0,2÷5 мм.

Для обработки разных материалов подбираются сочетания плазмообразующих и защитных газов, степень сжатия дуги, приближение к аноду. При обработке особенно тонких материалов используется режим импульсной работы при малоамперном питании дуги с подачей разнополярных импульсов тока.

Во время прохождения импульса одной полярности происходит наплавка или сварка металла, а при паузе за счет смены направления идет остывание и кристаллизация металла, создается сварная точка. Для ее хорошего образования оптимизируется процесс подачи тока и паузы. В сочетании с регулировкой амплитуды и удалением электрода это позволяет достичь высокого качества соединения различных металлов и сплавов.

Для выполнения микроплазменной сварки разработано много технологий, учитывающих разные углы наклона плазмотронов, создания поперечных колебаний для разрушения оксидных слоев, перемещение сопла относительно обрабатываемого шва и другие способы.

Сварка плазмой при средних токах 50÷150 ампер используется в промышленном производстве, машиностроении и ремонтных целях.

Высокие токи от 150 ампер используются для плазменных сварок, осуществляющих в промышленных условиях обработку легированных и низкоуглеродистых сталей, сплавов меди, титана, алюминия. Она позволяет снизить затраты на разделку кромок, повысить производительность процесса, оптимизировать качество швов по сравнению с электродуговыми способами соединений.

Плазменная наплавка металлов и напыление поверхностей

Отдельные детали машин требуют обеспечения высокопрочных или стойких к высоким температурам либо агрессивным средам поверхностей. С этой целью их покрывают защитным слоем дорогостоящего металла способами плазменной обработки. Для этого подготовленная проволока или порошок в мелких гранулах вводится в поток плазмы и распыляется в расплавленном состоянии на обрабатываемую поверхность.

Достоинства этого метода:

  • способность плазмы расплавлять любые металлы;

  • возможность получать сплавы разных составов и создавать многослойные покрытия;

  • доступность обработки форм любых габаритов;

  • удобство регулировок энергетических характеристик процессов.

Преимущества плазменной сварки

Очаг дуги, создаваемый при плазменной сварке, отличается от обычной электрической:

1. меньшей контактной площадкой на обрабатываемом металле;

2. бо́льшим тепловым воздействием благодаря приближению к цилиндрической форме;

3. повышенным механическим давлением струи на металл (примерно в 6÷10 раз);

4. способностью поддержания горения дуги на низких токах, вплоть до 0,2 ампера.

По этим четырем причинам плазменная сварка считается более перспективной и многоцелевой при обработке металлов. Она обеспечивает лучшее расплавление внутри уменьшенного объема.

Дуга плазмы обладает наиболее высокой концентрацией температуры и позволяет резать и сваривать металлы повышенной толщины даже при определенных увеличениях расстояния от сопла горелки до обрабатываемого изделия.

Кроме того, устройства плазменной сварки отличаются:

  • относительно небольшими габаритами;

  • надежностью в работе;

  • простотой регулирования мощности;

  • легким запуском;

  • быстрым прекращением рабочего режима.

Недостатки

Высокая стоимость оборудования ограничивает широкое внедрение плазменной сварки во все отрасли производства и среди маленьких предприятий.

electrik.info

Pereosnastka.ru

Сварка дугой косвенного действия

Категория:

Сварка металлов

Сварка дугой косвенного действия

Простейшим видом плазменной сварки можно считать сварку дугой косвенного действия. Дуга зажигается между двумя или несколькими электродами, например между тремя при питании дуги трехфазным током. Нагреваемый дугой объект в сварочную цепь не включен, поэтому он может быть изготовлен из материала, не проводящего электрический ток (стекло, керамика и т. п.). Электроды — обычно неплавкие из угля или графита; при вдувании защитных газов или помещении дуги в закрытую камеру, заполненную защитным газом, возможно применение вольфрамовых электродов. Наличие неплавких электродов обеспечивает высокую устойчивость дуги: при случайном обрыве катодное пятно довольно долго сохраняет высокую температуру и способность к термоэлектронной эмиссии, и дуга легко зажигается вновь при появлении достаточного напряжения.

При использовании постоянного тока наблюдается неравномерный разогрев электродов, анод нагревается значительно быстрее и при равных сечениях сгорает в 1,5—2 раза быстрее катода. Поэтому для питания дуги косвенного действия чаще применяется переменный ток, при этом устойчивость дуги достаточна, скорость сгорания разнополюсных электродов одинакова. Под действием магнитного поля сварочного контура линии тока изгибаются, а отброшенные электрически заряженные частицы при соударениях передают энергию нейтральным частицам и создают поток горячего газа — факел пламени. Температура начальной части факела у столба дуги весьма высока, а с удалением от столба температура падает и в конце факела не превышает 800—1000 °С. Длина факела может оставлять 100—200 мм. Пользуясь различными участками факела можно получать пламя различной температуры. Простейший двухэлектродный держатель для ручной сварки дугой косвенного действия переменного тока показан на рис. 2. Представляет интерес дуга косвенного действия, с вдуванием водорода в дугу. Способ носит название «атомноводородная сварка». Дуга переменного тока зажигается между двумя вольфрамовыми электродами; вдоль каждого из электродов в зону дуги подается струя водорода; основной металл не включен в сварочную цепь и не является электродом дуги. Концы вольфрамовых электродов слегка оплавляются, но плавление при нормальных режимах сварки не получает развития и вольфрам расходуется медленно. Столб дуги резко изогнут как под действием магнитного поля, создаваемого электродами г, током, так и под механическим воздействием водородной струи. Столб окружает ослепительно яркий ореол в форме плоского диска.

Рис. 1. Дуга косвенного действия: 1 — столб дуги; 2 — факел пламени

Рис. 2. Держатель для сварки дугой косвенного действия

В столбе и пламени атомноводородной дуги происходит диссоциация молекулярного двухатомного водорода в одноатомный по уравнению Н2 = 2Н. Эта реакция является эндотермической и связана с поглощением значительного количества тепла. Для осуществления диссоциации одного моля водорода нужно затратить 100 000 кал.

Рис. 3. Схема атомноводородной сварки

Образование молекулярного водорода особенно интенсивно происходит на поверхности металлов, оказывающих каталитическое действие на эту реакцию. Таким образом, если ввести в пламя атомного водорода металлическую пластинку, то ее поверхность быстро расплавится и образуется сварочная ванна. Процесс образования молекулярного водорода из атомного можно назвать горением, и можно говорить о пламени атомного водорода. По измерениям и теоретическим расчетам температура атомново-дородного пламени составляет около 3700 °С, что значительно выше температуры любого другого газового пламени; например, максимальная температура ацетилено-кислородного пламени составляет 3200 °С.

Нагревание водорода происходит главным образом за счет столба дуги, длину которого стараются увеличить, поэтому напряжение дуги при атомноводородной сварке обычно составляет 70—150 в, в среднем 100 в. Ввиду значительного напряжения атомноводородной дуги для питания ее применяют специальные сварочные трансформаторы с повышенным напряжением холостого хода (обычно около 300 в) и со специальными устройствами для защиты сварщика от поражения током. Атомноводородная горелка показана на рис. 4.

Рис. 4. Атомноводородная горелка

Вольфрамовые электроды применяют диаметром 1,5—4 мм, сварочные токи 10—70 а. Защитным газом обычно служат технически чистый водород или смеси, богатые водородом, например продукт диссоциации аммиака (2Nh4 = Na + ЗИ2), азотно-водородная смесь, состоящая из 75% водорода и 25% азота. В присутствии водорода не происходит заметного азотирования металла. Расход водорода при сварке 1—3 м3/ч.

Водород хорошо защищает металл от окисления, но в то же время при высокой температуре дуги он довольно легко соединяется с углеродом стали, образуя газообразные углеводороды, в результате чего содержание углерода в наплавленном металле может значительно снизиться, несмотря на хорошую защиту 0т окисления. Главная область применения атомноводородной сварки — специальные легированные конструкционные стали, а также алюминий иего сплавы. При сварке алюминия необходимо применять флюс, так как водород не восстанавливает окись алюминия. Применение атомноводородной сварки технически и экономически целесообразно лишь на материале малых толщин, примерно 1—5 мм. В настоящее время атомноводородная сварка применяется незначительно, одна из основных причин — неудобная технологически форма сварочного пламени.

Реклама:

Сварка сжатой дугой

Статьи по теме:

pereosnastka.ru


Смотрите также




Rambler's Top100

Copyright © 2009-2019  «МАГНИТЭК-НН» E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
603037 Нижний Новгород, ул. Федосеенко, д. 54
тел. 8 (831) 223-73-53, 223-55-05, 229-06-66, 223-55-45, 225-77-78, 225-44-50,
225-71-31
Карта сайта, XML